THE ASYMMETRIC VOLATILITY OF THE ISLAMIC CAPITAL MARKET DURING THE COVID-19 PANDEMIC

  • Achmad Nurdany UIN Sunan Kalijaga Yogyakarta, Indonesia https://orcid.org/0000-0001-7018-1589
  • Muhammad Hanif Ibrahim UIN Sunan Kalijaga Yogyakarta, Indonesia
  • Muhammad Fathul Romadoni UIN Sunan Kalijaga Yogyakarta, Indonesia
Keywords: Asymmetric Model, GARCH, Islamic Capital Market, Covid-19 Pandemic

Abstract

This study attempts to identify the existence of asymmetric volatility in the Islamic capital market in Indonesia during the Covid-19 pandemic. The paper employs the symmetric analysis of the GARCH (1,1) model and the asymmetric analysis of the TGARCH (1,1) model in order to identify Islamic capital market behaviour during the first 200 days after the first Covid-19 cases were confirmed. We used the daily closing prices of the Indonesia Sharia Stock Index (ISSI). The symmetric analysis of the GARCH (1,1) model revealed that the current value of return on the ISSI does not have a significant impact on its future value. On the other hand, the TGARCH (1,1) model showed that the asymmetric parameter coefficient was positive and statistically significant. Good news and bad news does not have the same level of impact on the volatility of returns on the ISSI. Furthermore, coefficients αi and γi in the variance equation indicate that good news has a higher volatility impact than bad news. The results indicate that investors should not to worry about the bad news effect of the Covid-19 pandemic, while the government should continue the mitigation of the spread of the coronavirus along with its economic recovery policy.

References

Al-Mukit, D. M. (2013). The effects of interest rates volatility on stock returns: Evidence from Bangladesh. International Journal of Management and Business Research, 3(3), 269–279.

Albu, L. L., Lupu, R., & Călin, A. C. (2015). Stock market asymmetric volatility and macroeconomic dynamics in Central and Eastern Europe. Procedia Economics and Finance, 22(2015), 560–567. https://doi.org/10.1016/S2212-5671(15)00259-2.

Ali, G. (2013). Egarch, gjr-garch, tgarch, avgarch, ngarch, igarch and aparch models for Pathogens at marine recreational sites. Journal of Statistical and Econometric Methods, 2(3), 57–73.

Ali, M., Alam, N., & Rizvi, S. A. R. (2020). Coronavirus (COVID-19) — An epidemic or pandemic for financial markets. Journal of Behavioral and Experimental Finance, 27(September 2020), 100341. https://doi.org/10.1016/j.jbef.2020.100341.

Babu, P. R., Kumar, S. R., & Naganjaneyulu, A. V. (2020). Modelling asymmetric volatility: Evidence from India. Journal of Critical Reviews, 7(9), 845-850. https://doi.org/10.31838/jcr.07.09.158.

Bauwens, L., Laurent, S., & Rombouts, J. V. K. (2006). Multivariate GARCH models: A survey. Journal of Applied Econometrics, 21(1), 79–109. https://doi.org/10.1002/jae.842.

Bissoondeeal, R. K., Hagströmer, B., Binner, J. M., & Mullineux, A. (2014). Stock market volatility, risk attitude and the demand for money in the UK. Working Paper No.21342. Eprints Bournemouth University, 1–24. http://eprints.

bournemouth.ac.uk/21342/3/Rakesh%2520paper-1.pdf.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1

Chang, C. L., Ilomäki, J., Laurila, H., & McAleer, M. (2018). Long run returns predictability and volatility with moving averages. Risks, 6(4), 105. https://doi.org/10.3390/risks6040105.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987-1007. https://doi.org/10.2307/1912773.

Ghazali M. F., & Lean H. H. (2015) Asymmetric volatility of local gold prices in Malaysia. In: Huynh VN., Kreinovich V., Sriboonchitta S., Suriya K. (eds), Econometrics of Risk. Studies in Computational Intelligence (Vol. 583, pp. pp.

–218. Cham: Springer. https://doi.org/10.1007/978-3-319-13449-9_14.

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48(5), 1779–1801. https://doi.org/10.1111/j.1540-6261.1993.

tb05128.x.

Hiscott, J., Alexandridi, M., Muscolini, M., Tassone, E., Palermo, E., Soultsioti, M., & Zevini, A. (2020). The global impact of the coronavirus pandemic. Cytokine & Growth Factor Reviews, 53(June 2020), 1–9. https://doi.org/10.1016/j.

cytogfr.2020.05.010.

Ho, K.-Y., Tsui, A. K., & Zhang, Z. (2013). Conditional volatility asymmetry of business cycles: Evidence from four OECD countries. Journal of Economic Development, 38(3), 33–55. https://doi.org/10.35866/caujed.2013.38.3.002.

Bank Indonesia. (2020). Monetary policy review June 2020. Retrevied from https://www.bi.go.id/en/publikasi/laporan/Documents/Monetary_Policy_Review_June_2020.pdf.

Kennedy, K., & Nourizad, F. (2016). Exchange rate volatility and its effect on stock market volatility. International Journal of Human Capital in Urban Management, 1(1), 37–46. http://www.ijhcum.net/article_19121_a4c266151330aafd7795dda447eab298.pdf.

Khorram, M., & Sheshmani, M. (2015). What period of time is better to use for moving average to predict stock price in Tehran stock exchange? Indian Journal of Science and Technology, 8(27), 1-8. https://doi.org/10.17485/ijst/2015/

v8i27/82640.

Koesoemasari, D. S. P., Hadiyato, K., Sundari, S., & Harsuti. (2017). Hubungan antara volatilitas harga saham dan volume perdagangan saham di Bursa Efek Indonesia. Sustainable Competitive Advantage-7 (SCA-7). FEB UNSOED. http://

jp.feb.unsoed.ac.id/index.php/sca-1/article/view/1020.

Miralles-Marcelo, J. L., Miralles-Quirós, J. L., & Miralles-Quirós, M. del M. (2013). Multivariate GARCH models and risk minimizing portfolios: The importance of medium and small firms. The Spanish Review of Financial Economics, 11(1),

–38. https://doi.org/10.1016/j.srfe.2013.03.001.

Nguyen, C. T., & Nguyen, M. H. (2019). Modeling stock price volatility: Empirical evidence from the Ho Chi Minh City stock exchange in Vietnam. Journal of Asian Finance, Economics and Business, 6(3), 19–26. https://doi.org/10.13106/

jafeb.2019.vol6.no3.19.

Olbrys, J., & Majewska, E. (2017). Asymmetry effects in volatility on the major European stock markets: The EGARCH based approach. Quantitative Finance and Economics, 1(4), 411–427. https://doi.org/10.3934/QFE.2017.4.411.

Ormos, M., & Timotity, D. (2016). Unravelling the asymmetric volatility puzzle: A novel explanation of volatility through anchoring. Economic Systems, 40(3), 345–354. https://doi.org/10.1016/j.ecosys.2015.09.008.

Perron, P. (1997). Further evidence on breaking trend functions in macroeconomic variables. Journal of Econometrics, 80(2), 355–385. https://www.sciencedirect.com/science/article/abs/pii/S0304407697000493.

Ren, Y., Liao, F., & Gong, Y. (2020). Impact of news on the trend of stock price change: An analysis based on the deep bidirectiona LSTM model. Procedia Computer Science, 174(2020), 128–140. https://doi.org/10.1016/j.procs.2020.06.068.

Rojas-Mora, J., & Chamorro-Futinico, J. C. (2017). Dynamics and volatility at stock market indexes of pacific alliance countries. Panorama Economico, 24(October 2016 - September 2017), 71–84.

Saida, M. D. N., Sudarno, & Hoyyi, A. (2016). Pemodelan return indeks harga saham gabungan menggunakan threshold generalized autoregressive conditional heteroscedasticity (TGARCH). Jurnal Gaussian, 5(3), 465–474.

Sari, L. K., Achsani, N. A., & Sartono, B. (2017). Pemodelan volatilitas return saham: Studi kasus pasar saham Asia. Jurnal Ekonomi dan Pembangunan Indonesia, 18(1), 35–52. https://doi.org/10.21002/jepi.v18i1.717.

Talpsepp, T., & Rieger, M. O. (2010). Explaining asymmetric volatility around the world. Journal of Empirical Finance, 17(5), 938–956. https://doi.org/10.1016/j.jempfin.2010.08.005.

Uyaebo, S. O., Atoi, V. N., & Usman, F. (2015). Nigeria stock market volatility in comparison with some countries: Application of asymmetric GARCH models. CBN Journal of Applied Statistics, 6(2), 133–160.

Valls Ruiz, N. (2014). Volatility in financial markets: The impact of the global financial crisis. Ph.D Thesis. Universitat de Barcelona. http://diposit.ub.edu/dspace/bitstream/2445/65063/1/NVR_PhD_THESIS.pdf.

Vulandari, R. T. (2015). Perbandingan model asimetris volatilitas return indeks saham dengan EGARCH dan EGARCH-ECM pada pasar saham syariah dan konvensional [Institut Teknologi Sepuluh Nopember.]. http://repository.its.ac.id/51875/.

WHO. (2020). Coronavirus disease (COVID-19) pandemic. Retrevied from https://www.who.int/emergencies/diseases/novel-coronavirus2019?gclid=EAIaIQobChMI0IaU-7qB7wIVBZVLBR36LAbTEAAYASAAEgKv1_D_BwE

Williams, O. D. (2006). Empirical optimization of bollinger bands for profitability (August 8, 2006). Simon Fraser University Library. Available at SRRN : https://doi.org/10.2139/ssrn.2321140.

World Health Organization (2020). Covid-19 Situation Report. World Health Organization, 31(2), 61–66.

Zakoian, J.-M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18(5), 931–955. https://doi.org/10.1016/0165-1889(94)90039-6

Published
2021-03-23
How to Cite
Nurdany, A., Ibrahim, M., & Romadoni, M. (2021). THE ASYMMETRIC VOLATILITY OF THE ISLAMIC CAPITAL MARKET DURING THE COVID-19 PANDEMIC. Journal of Islamic Monetary Economics and Finance, 7, 185 - 202. https://doi.org/10.21098/jimf.v7i0.1312