RETAKAFUL CONTRIBUTIONS MODEL USING MACHINE LEARNING TECHNIQUES

  • Kouach Yassine University Hassan II of Casablanca, Morocco https://orcid.org/0000-0002-8431-3754
  • EL Attar Abderrahim University Hassan II of Casablanca, Morocco
  • EL Hachloufi Mostafa University Hassan II of Casablanca, Morocco

Abstract

Driven by the need to manage risk by the newly created Moroccan Takaful operators, the Moroccan Insurance and Social Welfare Control Authority has authorized the Central Reinsurance Company to create a ReTakaful window for the purpose of reinsuring Takaful operations. Nevertheless, the main challenge is determining the appropriate ReTakaful model for the Moroccan Islamic insurance sector by ensuring compliance with Shariah. With this in mind, this article aims to determine the optimal ReTakaful contributions model for the Moroccan Takaful industry via Machine Learning algorithms. We select the best model by comparing the performance of each algorithm. The achieved results of this study demonstrate the potential of using Machine Learning algorithms to compute ReTakaful contributions that are more suitable for Takaful operators and more optimal for the ReTakaful operator.

Keywords: ReTakaful, Takaful, Reinsurance, Treaty, Machine learning, Probability of ruin.

References

Ahmad, A. U. F., Mahbob, I. B., & Ayub, M. (2015). Sharing and transferring risks in retakāful and conventional reinsurance: A critical analysis. Journal of King Abdulaziz University, Islamic Economics, 28(2), 117–154.

Ali, N. A., & Markom, R. (2021). Shariah compliance on retakaful in Malaysia. Diponegoro Law Review, 6(1), 1–16.

Alkhan, A. M., & Hassan, M. K. (2020). How do takaful operators choose which model to adopt? A case study from the Kingdom of Bahrain. Journal of Islamic Accounting and Business Research, 11(9), 1677–1688.

Alshammari, A., & Altwijry, O. (2023). Reform of retakaful industry: A quest. Islamic Studies, 62(2), 255-274.

Arbouna, B. (2000). The operation of retakaful (Islamic reinsurance) protection. Arab Law Quarterly, 15(4), 335–362.

Archer, S., Karim, R. A. A., & Nienhaus, V. (2011). Takaful Islamic insurance: Concepts and regulatory issues. Clementi Loop, Singapore: John Wiley & Sons.

Bekkaye, C., & Zari, T. (2023). The use of machine learning in non-life insurance: Literature review. International Journal of Accounting, Finance, Auditing, Management and Economics, 4(2–1), 307-319.

Bellina, R. (2014). Méthodes d’apprentissage appliquées à la tarification non-vie [Mémoire].

Bensed, N., & Fasly, H. (2020). L’assurance Islamique “takaful”: Etat des lieux au Maroc. Revue Française d'Economie et de Gestion, 1(5), 13–30.

Billah, M. M. (2019a). Re-takaful products. In M. M. Billah (Ed.), Islamic insurance products: Exploring takaful principles, instruments and structures (pp. 407–415). Springer International Publishing. https://doi.org/10.1007/978-3-030-17681-5_35

Billah, M. M. (2019b). Re-takaful products in a nutshell. In M. M. Billah (Ed.), Islamic insurance products: Exploring takaful principles, instruments and structures (pp. 29–45). Springer International Publishing. https://doi.org/10.1007/978-3-030-17681-5_2

Billah, M. M., Ghlamallah, E., & Alexakis, C. (2019). Encyclopedia of Islamic insurance, takaful and retakaful. Cheltenham, UK: Edward Elgar Publishing.

Budd, E. (2016). Les particularités du Takaful (assurance selon l’islam) [Master’s thesis]. University of Panthéon-ASSAS – PARIS II.

Correa-Garcia, S., Constant, P., & Yergeau, E. (2022). The forecasting power of the microbiome. Trends in Microbiology, 31(5), 444-452.

Derkaoui, T., & Halourou Souley, M. (2016). Conception d’un produit Takaful décès emprunteur dans le contexte marocain [Master’s thesis]. INSEA, University Mohammed V.

El Attar, A., & El Hachloufi, M. (2022). Actuarial model for takaful contributions via optimal retakaful. Journal of Islamic Accounting and Business Research, 13(5), 778–790.

Essadic Amine, & Mouhssine Yassine. (2018). Comparative study between the proportional approach and the non-proportional approach in retakaful. Вестник Белгородского Университета Кооперации, Экономики И Права, 4(71), 202-220.

Fotia Santsa, R. P. (2018). Méthodes d’apprentissage statistique appliquées à la tarification non-vie: Tarification Automobile [Mémoire de Master en Actuariat,FST]. UNIVERSITE DES MONTAGNES.

Fox, J. (2022). Review of Linear Models, Generalized Linear Models, and Linear Mixed-Effects Models, pp. 1-13.

Gotlieb, N., Azhie, A., Sharma, D., Spann, A., Suo, N.-J., Tran, J., Orchanian-Cheff, A., Wang, B., Goldenberg, A., Chassé, M., Cardinal, H., Cohen, J. P., Lodi, A., Dieude, M., & Bhat, M. (2022). The promise of machine learning applications in solid organ transplantation. Npj Digital Medicine, 5(1), 89-101.

Gunardi, S., Deuraseh, N., Tahir, H. M., & Ahmad, S. (2013). Retakaful from syariah perspective: A comparative study. Chinese Business Review, 12(9), 616–624.

Hasan, A. (2011). Shariah issues in the operation of retakaful and reinsurance: A preliminary exploration from Shariah perspective. IIUM Law Journal, 19(2), 149-178.

Hassan, A., & Mollah, S. (2018). Operational mechanism of takaful and re-takaful. In A. Hassan & S. Mollah (Eds.), Islamic finance: Ethical underpinnings, products, and institutions (pp. 193–205). Springer International Publishing. https://doi.org/10.1007/978-3-319-91295-0_14

Htay, S. N. N., Hamat, M., Wan Ismail, W. Z., & Salman, S. A. (2014). Retakaful (Islamic reinsurance) historical, shari’ah and operational perspectives. World Applied Sciences Journal, 30((Innovation Challenges in Multidiciplinary Research & Practice)), 185–190.

IFSB-18. (2016). Principes directeurs du Retakaful (Réassurance islamique). https://www.ifsb.org/

Khouaja, M. A. (2015). Takaful, Le chemin islamique à l’assurance: Développement d’un outil de tarification Takaful Auto—RC [Master’s thesis]. FST, University Cadi Ayyad.

Kouach, Y., El Attar, A., & El Hachloufi, M. (2022). Automobile takaful pricing by machine learning algorithms. Recherches et Applications En Finance Islamique (RAFI), 6(2), 201-218.

McNamara, M. E., Zisser, M., Beevers, C. G., & Shumake, J. (2022). Not just “big” data: Importance of sample size, measurement error, and uninformative predictors for developing prognostic models for digital interventions. Behaviour Research and Therapy, 153(2022), 104086.

Mohamed Yusuf, R. Y. (2011). Revisiting and redefining the concept of reTakaful and the viability of its model in Malaysian Takaful industry. Business and Management Quarterly Review (BMQR), 2(4), 20–32.

Nanfack, G., Temple, P., & Frénay, B. (2022). Constraint enforcement on decision trees: A survey. ACM Computing Surveys (CSUR), 54(10s), 1–36.

Paturi, U. M. R., Cheruku, S., & Reddy, N. S. (2022). The role of artificial neural networks in prediction of mechanical and tribological properties of composites—A comprehensive review. Archives of Computational Methods in Engineering, 29(5), 3109–3149.

Saed, A. A. A., & Jaharadak, A. A. (2022). Implementation with performance evaluation of decision tree classifier for uncertain data: Literature review. International Journal of Multidisciplinary Research and Publications, 5(5), 125-132.

Saint-Cirgue, G. (2019). Apprendre le maching learning en une semaine. https://machinelearnia.com/apprendre-le-machine-learning-en-une-semaine/

Santhosh, N. M., Cheriyan, J., & Nair, L. S. (2022). A multi-model intelligent approach for rumor detection in social networks. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS), 1–5.

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x

Sheetal, A., Jiang, Z., & Di Milia, L. (2023). Using machine learning to analyze longitudinal data: A tutorial guide and best-practice recommendations for social science researchers. Applied Psychology, 72(3), 1339–1364.

Taye, M. M. (2023). Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions. Computation, 11(3), 52. https://doi.org/10.3390/computation11030052

Xie, J., Sage, M., & Zhao, Y. F. (2023). Feature selection and feature learning in machine learning applications for gas turbines: A review. Engineering Applications of Artificial Intelligence, 117(2023), 105591.

PlumX Metrics

Published
2023-09-02
How to Cite
Yassine, K., Abderrahim, E. A., & Mostafa, E. H. (2023). RETAKAFUL CONTRIBUTIONS MODEL USING MACHINE LEARNING TECHNIQUES. Journal of Islamic Monetary Economics and Finance, 9(3), 511-532. https://doi.org/10.21098/jimf.v9i3.1681
Section
Articles