SOCIAL MEDIA DATA TO DETERMINE LOAN DEFAULT PREDICTING METHOD IN AN ISLAMIC ONLINE PEER TO PEER LENDING

  • Hasna Nabila Laila Khilfah SBM Institut Teknologi Bandung, Indonesia
  • Taufik Faturohman SBM Institut Teknologi Bandung, Indonesia
Keywords: Credit scoring, Islamic online peer to peer lending, Fintech, Indonesia

Abstract

Currently, financial technology is growing rapidly in Indonesia. One of financial technology major type is online peer to peer lending platform. Islamic online peer to peer lending is also emerging. However, credit risk still a major concern for this platform. In order to address this issue, social media assessment is developed. Therefore, in this paper, authors aimed to identify social media variables that could be used as default probability predictors and to determine predictability level by added social media data to the model. Six independent variables consist of social media data and seven control variables from historical payment and demographic data are used to construct credit scorecard and logistic. The result identifies five variables that could be considered and used as default probability predictor which are Posting Frequency in Midnight, Followers, Following, Employment, and Tenor. Interestingly, number of religion accounts followed in Instagram is not a significant variable. Furthermore, the model with selected variables through the combination of demographic, historical payment, and social media data could increase the predictability level by 6.6%.

References

Ancri, C. (2016, October 19). Fintech Innovation : An Overview. Retrieved November 30, 2018, from World Bank Publication: http://pubdocs.worldbank.org/en/767751477065124612/11-Fintech.pdf
Asosiasi Penyelenggara Jasa Internet Indonesia. (2018). Laporan Survei Penetrasi & Profil Perilaku Pengguna Internet Indonesia. Retrieved June 10, 2019, from https://apjii.or.id/survei
Badan Pusat Statistik. (2017). Produk Domestik Regional Bruto Kabupaten/Kota di Indonesia 2013-2017. Retrieved April 18, 2019, from https://www.bps.go.id/publication/download.html
Bagaskara, B. P., & Setiawan, C. (2016). Non-Performing Financing (NPF) and Cost Efficiency of Islamic. Journal of Emerging Issues in Economics, Finance and Banking (JEIEFB), 5(1), -. Retrieved September 29, 2018, from http://globalbizresearch.org/economics/images/files/74631_T632_JEIEFB_
Chandra%20Setiawan_Bhirawa%20Praditya%20Bagaskara.pdf
Bank Indonesia. (n.d.). Retrieved October 08, 2018, from Bank Indonesia Official Website: https://www.bi.go.id/id/edukasi-perlindungan-konsumen/edukasi/produk-dan-jasa-sp/fintech/Pages/default.aspx
Bank Indonesia. (2015). Profil Bisnis UMKM. Retrieved November 25, 2018, from https://www.bi.go.id/id/umkm/penelitian/nasional/kajian/Pages/Profil-Bisnis-UMKM.aspx
Bank Indonesia. (2018). Survei Perbankan Triwulan III - 2018. Retrieved November 25, 2018, from https://www.google.com/urlsa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=
2ahUKEwiXpeK9q9_iAhWIiHAKHcETAPkQFjABegQIABAC&url=
https%3A%2F%2Fwww.bi.go.id%2Fid%2Fpublikasi%2Fsurvei%2Fperbankan%
2FDocuments%2FTriwulan%2520III%2520-%25202018.pdf&usg=AOvVaw3eozHJfLGmF9
Basel. (2000). Principles for The Management of Credit Risk. 1. Retrieved December 05, 2018, from https://www.bis.org/publ/bcbs54.pdf
Bolton. (2009). Logistic Regeression and Its Application in Credit Scoring. Retrieved December 01, 2018, from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1024.2660&rep=rep1&type=pdf
Brown, K., & Peter, M. (2014). Credit Risk Management. Great Britain. Retrieved November 03 , 2018, from https://www.ebsglobal.net/documents/course-tasters/english/pdf/h17cr-bk-taster.pdf
Chen, F., Guan, C., Guo, G., Liu, Q., Wu, L., & Zhu, F. (2016). From Footprint to Evidence: An Exploratory Study of Mining Social Data for Credit Scoring. ACM Transactions on the Web (TWEB). Retrieved November 15, 2018, from https://dl.acm.org/citation.cfm?id=2996465
Chen, L., Li, Q., & Zeng, Y. (2018). The mechanism and effectiveness of credit scoring of P2P lending platform: Evidence from Renrendai.com. China Finance Review International. Retrieved November 03, 2018, from https://www.emeraldinsight.com/doi/abs/10.1108/CFRI-06-2017-0156
Claessens, S., Frost, J., Turner, G., & Zhu, F. (2018, September). BIS Quarterly Review, September 2018 29Fintech credit markets around the world: size, drivers and policy issues. BIS Quarterly Review, p. 33. Retrieved June 11, 2018, from https://www.bis.org/publ/qtrpdf/r_qt1809e.pdf
Cortina, J. J. (2018, April). The Fintech Revolution: A Threat to Global Banking? Retrieved June 11, 2019, from World Bank Document: http://documents.worldbank.org/curated/en/516561523035869085/pdf/125038-REVISED-A-Threat-to-Global-Banking-6-April-2018.pdf
Dellarocas, C., Wei, Y., Yildirim, P., & Van den Bulte, C. (2016). Credit Scoring with Social Network Data. Marketing Science. Retrieved November 03, 2018, from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2475265
Emekter, R., Jirasakuldech, B., Lu, M., & Tu, Y. (2014). Evaluating credit risk and loan performance in online Peer-to-Peer (P2P) lending. Journal Applied Economics. Retrieved November 03, 2018, from https://www.tandfonline.com/doi/abs/10.1080/00036846.2014.962222
Fatemi, A., & Fooladi, I. (2006). Credit risk management: a survey of practices. Managerial Finance, 227-233. Retrieved November 03, 2018, from https://www.emeraldinsight.com/doi/abs/10.1108/03074350610646735
Fight, A. (2004). Credit Risk Management. Oxford: Elsevier Butterworth-Heinemann. Retrieved November 03, 2018, from https://books.google.co.id/books?hl=id&lr=&id=wd15dswnQWgC&oi=fnd&pg=PP1&dq=credit+risk+management&ots=
J7mHDienpt&sig=FivaBX-FmLFDwYT6sUVPZwKHcCs&redir_esc=y#v=onepage&q=credit%20risk%

20management&f=false
Governor, B. I. (2017, Agustus 28). Transaksi fintech diperkirakan US$ 18,65 miliar. (A. A. Mustami, Interviewer, & W. Rahamawati, Editor) Kontan.co.id. Retrieved November 30, 2018, from https://nasional.kontan.co.id/news/transaksi-fintech-diperkirakan-us-1865-miliar
Greuning, H., & Iqbal, Z. (n.d.). Risk analysis for Islamic banks (English). Retrieved December 04, 2018, from http://documents.worldbank.org/curated/en/688471468143973824/Risk-analysis-for-Islamic-banks
Gujarati, D. (2004). Basic Econometrics. Retrieved May 25 , 2019, from http://www.afriheritage.org/TTT/2%20Basic%20Econometrics%20-%20Gujarati[1].pdf
Hsieh, & Lee. (2011). Data Mining in Building Behavioral Scoring Model. Retrieved November 14, 2018, from https://www.researchgate.net/publication/224208444_Data_Mining_in_
Building_Behavioral_Scoring_Models
Kementerian Keuangan. 2008. Undang - Undang No. 11 Tahun 2008. Retrieved 6 December, 2019 from http://www.jdih.kemenkeu.go.id/fullText/2008/11TAHUN2008UU.html
Kementerian Komunikasi dan Informatika. 2012. Peraturan Pemerintah No. 82 Tahun 2012. Retrieved December 6, 2019 from https://jdih.kominfo.go.id/produk_hukum/view/id/6/t/
peraturan+pemerintah+republik+indonesia+nomor+82+tahun+2012
Kocenda, & Vojtek. (2006). Credit Scoring Methods. Retrieved November 14, 2018, from https://pdfs.semanticscholar.org/fe0c/ac08a8a5206501b95fe73bac043ab5ac8ddb.pdf.
Kosinskia, M., Stillwella, D., & Graepelb, T. (2013). Private traits and attributes are predictable from. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA . Retrieved June 25, 2019, from http://discovery.ucl.ac.uk/1395203/
Marifatika, E. (2015). Pembagian Waktu AM dan PM. Retrieved March 01 , 2019, from kelasbahasainggris.com: http://kelasbahasainggris.com/pembagian-waktu-am-dan-pm/
Midi, H., Rana, S., & K., S. S. (2013). Collinearity diagnostics of binary logistic regression model. Journal of Interdisciplinary Mathematics. Retrieved May 31 , 2019, from https://www.tandfonline.com/doi/abs/10.1080/09720502.2010.10700699
Novalia, I. (2018, Agustus). Mengenal Investasi P2P Lending Syariah dan Cari Tahu Cara Investasinya. Retrieved June 25, 2019, from https://www.finansialku.com/p2p-lending-syariah/
Nyong'o, & N., J. (2009). THE RELATIONSHIP BETWEEN CREDIT RISK MANAGEMENT AND NON-PERFORMING LOANS IN COMMERCIAL BANKS IN KENYA. Retrieved November 03, 2018, from http://erepository.uonbi.ac.ke/bitstream/handle/11295/76217/Nyong%60o
The%20relationship%20between%20credit%20risk%20management%20and%20non-performing%20loans%20in%20commercial%20banks%20in%20Kenya.pdf?sequence=3
OJK, D. o. (2018, Desember 13). Yang Membuat OJK Tak Berdaya Hadapi Fintech P2P Lending Ilegal. (V. F. Thomas, Interviewer) Tirto.id. Retrieved June 11, 2019, from https://tirto.id/yang-membuat-ojk-tak-berdaya-hadapi-fintech-p2p-lending-ilegal-dbLP
OJK, D. o. (2019, March 01). Kredit Macet Pinjaman Online Makin Tinggi, Apa Jadi Bom Waktu? (D. C. Syafina, Interviewer) Retrieved June 11, 2019, from https://tirto.id/kredit-macet-pinjaman-online-makin-tinggi-apa-jadi-bom-waktu-dhZM
Otoritas Jasa Keuangan & Asosiasi Fintech Indonesia. (2017). Financial Technology (Fintech) di Indonesia. Retrieved June 10, 2019, from http://www.ibs.ac.id/img/doc/MDH%20
-%20FinTech%20IBS%20June%202017.pdf
Otoritas Jasa Keuangan. (2016). PERATURAN OTORITAS JASA KEUANGAN NOMOR 77/POJK.01/2016. Retrieved November 25, 2018, from https://www.ojk.go.id/id/regulasi/otoritas-jasa-keuangan/peraturan-ojk/Documents/Pages/POJK-Nomor-77-POJK.01-2016/SAL%20-%20POJK%20Fintech.pdf
Otoritas Jasa Keuangan. (2018, September). Ikhtisar Data Keuangan Fintech (Peer To Peer Lending) Periode September 2018. Retrieved November 04, 2018, from OJK Official Websiter: https://www.ojk.go.id/id/kanal/iknb/data-dan-statistik/fintech/Pages/Ikhtisar-Data-Keuangan-Fintech-(Peer-To-Peer-Lending)-Periode-September-2018.aspx
Otoritas Jasa Keuangan. (2018). Laporan Profil Industri Perbankan Triwulan III - 2018. Retrieved November 25, 2018, from https://www.ojk.go.id/id/kanal/perbankan/data-dan-statistik/laporan-profil-industri-perbankan/Documents/LPIP%20TW%20III-18.pdf
Otoritas Jasa Keuangan. (2018, September). Perkembangan Fintech Lending (Pendanaan Gotong-Royong On-Line). Retrieved November 03, 2018, from OJK Official Website: https://www.ojk.go.id/id/berita-dan-kegiatan/siaran-pers/Documents/Pages/Siaran-Pers-Satgas-Kembali-Temukan-182-Fintech-Peer-To-Peer-Lending-Tanpa-Izin/180905%20Statistik%20Fintech%20Lending%20Indonesia-in%20Bahasa.pdf
Parveen, H., & Showkat, N. (2017). Non-Probability and Probability Sampling. Retrieved June 25, 2019, from https://www.researchgate.net/publication/319066480_Non-Probability_and_Probability_Sampling/download
PWC. (2016, March). Blurred lines:How FinTech is shaping Financial Services. Retrieved September 30, 2018, from https://www.pwc.de/de/newsletter/finanzdienstleistung/assets/insurance-inside-ausgabe-4-maerz-2016.pdf
PWC. (2018). Indonesia Banking Survey. Retrieved November 01, 2018, from https://www.pwc.com/id/en/publications/assets/financialservices/2018-indonesia-banking-survey.pdf
Scorto. (n.d.). Behavioral Scoring. Retrieved November 03, 2018, from https://scorto.com/behavioral-scoring/
Siddiqi, N. (2005). Credit Risk Scorecards : Developing and Implementing Intelligent Credit Scoring. John Wiley & Sons, Inc. Retrieved May 31, 2018, from https://pdfs.semanticscholar.org/dd5c/
7f59d20d9a00d4c93e3d6a7e9973f3462e7e.pdf%20[27%20May%202018
Siddiqi, N. (2006). Credit Risk. John Wiley & Sons, Inc. Retrieved May 31, 2019, from https://pdfs.semanticscholar.org/dd5c/
7f59d20d9a00d4c93e3d6a7e9973f3462e7e.pdf%20[27%20May%202018
Statista. (n.d.). Retrieved October 08, 2018, from https://www.statista.com/outlook/295/120/fintech/indonesia#market-arpu
Tabagari, S. (2015). Credit Scoring by Logistic Regression. Retrieved November 15, 2018, from http://dspace.ut.ee/handle/10062/47572
Tan, & Phan. (2016). Social Media-Driven Credit Scoring: the Predictive Value of Social Structures. Retrieved November 04 , 2018, from https://www.semanticscholar.org/paper/Social-Media-Driven-Credit-Scoring%3A-the-Predictive-Tan-Phan/2f1ce382e2be6ff6c70e2a43e0197d89426992c9
Thomas, L. C. (2000). A survey of credit and behavioural scoring: forecasting financialrisk of lending to consumers. International Journal of Forecasting. Retrieved December 04, 2018, from http://socsci2.ucsd.edu/~aronatas/project/academic/A%20survey%20of%
20credit%20and%20behavioural%20scoring%20Forecasting%20fina.pdf
Todorof, M. (2018). Shariah-compliant FinTech in The Banking Industry. ERA Forum.
Tsai, e. a. (2009). The consumer loan default predicting model – An application of DEA–DA. Expert Systems with Applications. Retrieved November 03, 2018, from https://www.semanticscholar.org/paper/
The-consumer-loan-default-predicting-model-An-of-Tsai-Lin/d75535e84eb7a68b9aefbe7765033d38298b1f63
Wibowo, P. P. (2017, September). Innovation & Fintech Innovation Development in Retail Payment in Indonesia. Retrieved October 08, 2018, from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=9&cad=rja&uact=8&ved=
2ahUKEwjXmbSWzN3iAhXOXisKHa-PAWkQFjAIegQIBxAC&url=https%3A%2F%2Fwww.bi.go.id%
2Fid%2Finstitute%2Fkegiatan%2FFlagship%2FContents%2FDay4_Session3_
Innovation%2520and%2520Fintec
World Bank. (2017). Global Findex. Retrieved June 10, 2019, from https://globalfindex.worldbank.org/sites/globalfindex/files/chapters/2017
%20Findex%20full%20report_chapter2.pdf
Yap, B. W., Ong, S. H., & Husain, N. (2011). Using data mining to improve assessment of credit worthiness via. Expert Systems with Applications. Retrieved November 14, 2018, from https://www.sciencedirect.com/science/article/pii/S0957417411006749
Published
2020-05-21
How to Cite
Khilfah, H., & Faturohman, T. (2020). SOCIAL MEDIA DATA TO DETERMINE LOAN DEFAULT PREDICTING METHOD IN AN ISLAMIC ONLINE PEER TO PEER LENDING. Journal of Islamic Monetary Economics and Finance, 6(2). https://doi.org/10.21098/jimf.v6i2.1184
Section
Articles